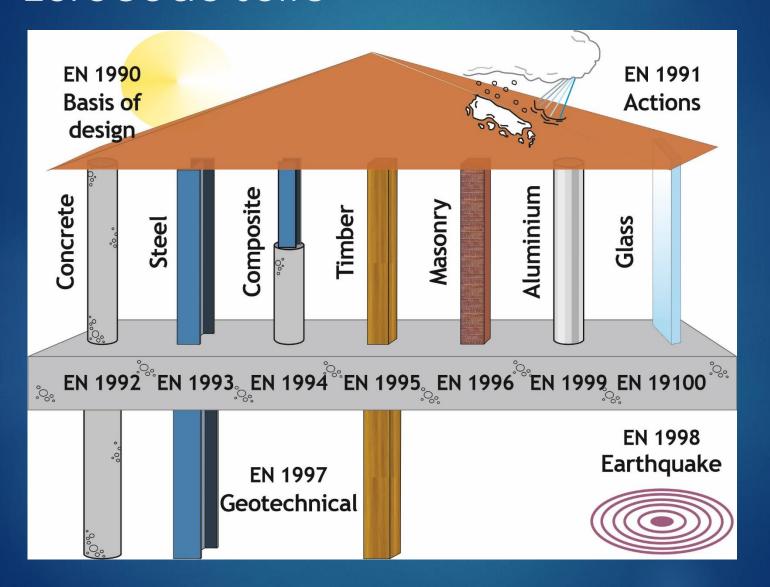
2nd generation Decoding ^ Eurocode 7 Eurocode 7 2nd-generation update

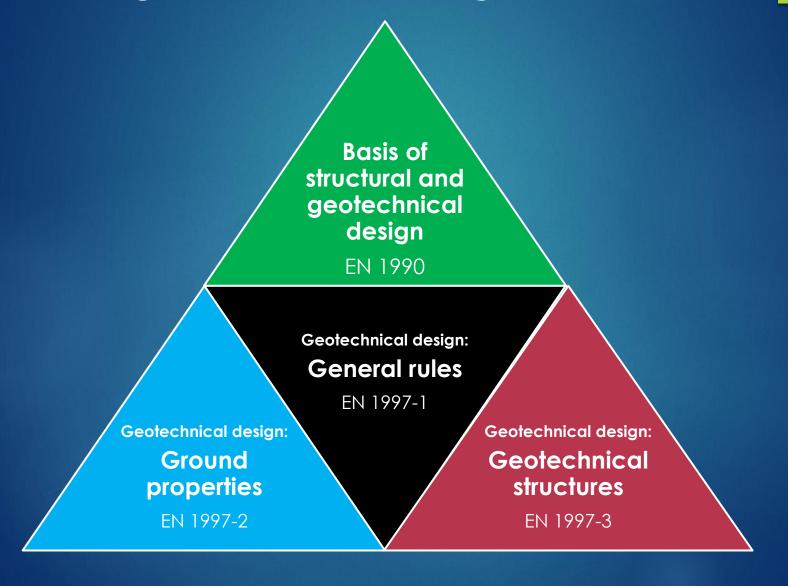
DR ANDREW BOND (GEOCENTRIX)

CHAIR B/526 GEOTECHNICS

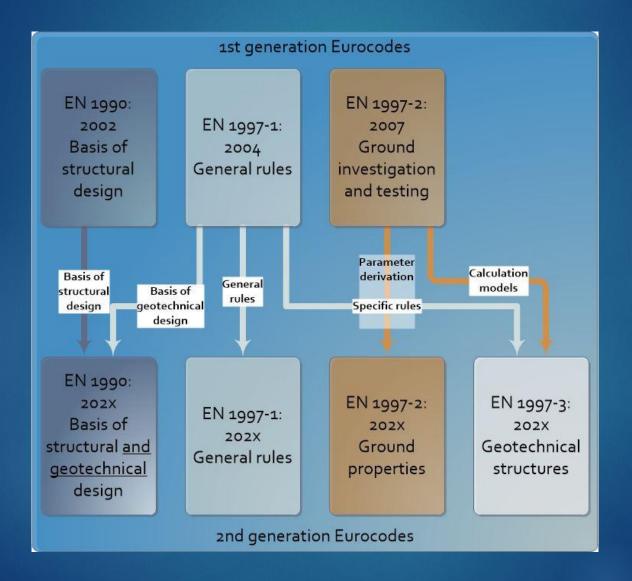
PAST-CHAIR TC250/SC7 GEOTECHNICAL DESIGN

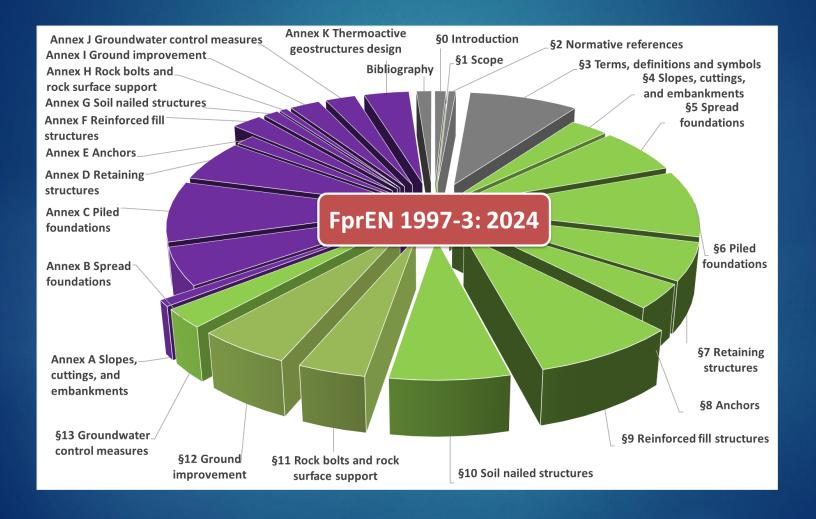

Decoding 2nd generation Eurocode 7 Eurocode 7 – 2nd-generation update

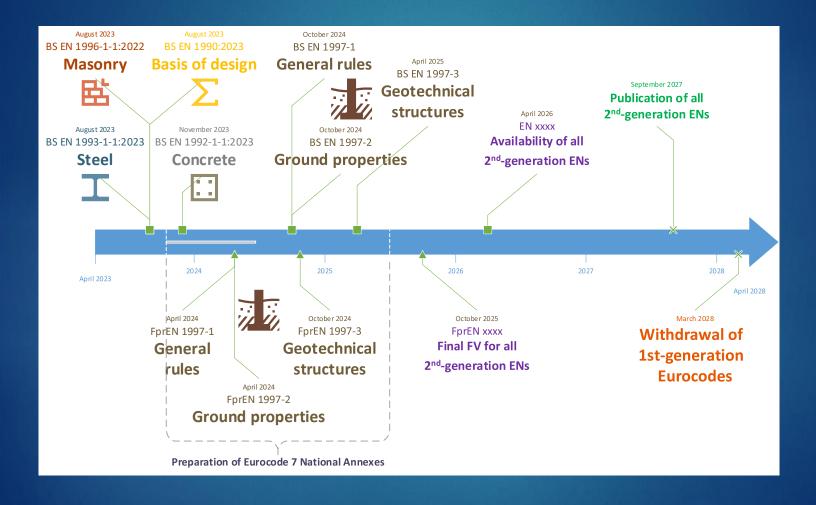
- What and when?
- Key technical changes
- Summary of key points


What and when?

EUROCODE 7
2ND-GENERATION UPDATE


Overview of the 2nd generation Eurocode suite


2nd generation Eurocodes Core geotechnical design standards


2nd generation – transformation of Eurocode 7 into 3 Parts

Contents of Eurocode 7 Part 3: Geotechnical structures

Timeline for the second-generation Eurocodes

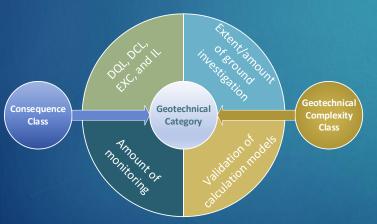
Key technical changes in Eurocode 7 from the 1stgeneration **EUROCODE 7** 2ND-GENERATION UPDATE

Assumptions made by EN 1997

In addition to the assumptions given in EN 1990, EN 1997 (all parts) assumes:

- ground investigations are planned by individuals or organizations knowledgeable about potential ground and groundwater conditions
- ground investigations are executed by individuals with appropriate skill and experience
- evaluation of test results and derivation of ground properties from ground investigation are carried out by individuals with appropriate geotechnical experience and qualifications
- data required for design are collected, recorded, and interpreted by appropriately qualified and experienced individuals
- geotechnical structures are designed and verified by individuals with appropriate qualifications and experience ingeotechnical design
- adequate continuity and communication exist between individuals involved in data-collection, design, verification and execution

ocentrix Ltd


Vew

New

nts reserved

Revised definition of the Geotechnical Category

Conseq uence Class	Geotechnical Complexity Class (GCC)			
	Lower (GCC1)	Normal (GCC2)	Higher (GCC3)	
CC3			GC3	
CC2		GC2		
CC1	GC1			

cl	quence ass/ cription	Loss of human life*	Economic, social or environ- mental*	Examples of buildings where	Factor k _F	Reliability index, eta_{50}	Prob- ability of failure, P _{f,50}	
CC4	Highest	Extreme	Huge	Additional provisions can be needed				
CC3	Higher	High	Very great	people assemble e.g. grandstands, concert halls	1.1	4.3	~10-5	
CC2	Normal	Medium	Consider- able	people normally enter e.g. residential and office buildings	1.0	3.8	~10-4	
CC1	Lower	Low	Small	people do not normally enter e.g. agricultural buildings, storage buildings	0.9	3.3	~10 ⁻³	
CC0	Lowest	Very low	Insignificant	Alternative provisions	s may be	used		

*CC is chosen based on the more severe of these two columns

Basic requirements of EN 1997-1

The following models shall be used to verify the requirements for safety, serviceability, robustness, and durability of geotechnical structures:

Ground Model

Geotechnical Design Model

Ground Model

 site specific outline of the disposition and character of the ground and groundwater based on results from ground investigations and other available data

Geotechnical Design Model

 conceptual representation of the site derived from the ground model for the verification of each appropriate design situation and limit state

Limit states

The following ultimate limit states shall be verified, as relevant:	1 st -gen
failure of the structure or the ground, or any part of them including supports and foundations, by • rupture • excessive deformation • transformation into a mechanism	STR/GEO Jargon removed
buckling	
loss of static equilibrium of the structure or any part of it	EQU
failure of the ground by hydraulic heave, internal erosion, or piping caused by excessive hydraulic gradient	HYD
failure caused by fatigue	FAT
failure caused by vibration	
failure caused by other time-dependent effects	

No single Design Approach – even in a country! (Bond and Harris, 2008)

Verification of ultimate limit states

Ultimate limit states must be verified using:

$$E_{\rm d} \leq R_{\rm d}$$

For ultimate limit states caused by excessive deformation:

$$E_{\rm d} \leq C_{\rm d,ULS}$$

Factor may be applied to actions:

Verification Cases 1-3 (Factored actions)

Factors may be applied to **material** properties:

Material factor approach (MFA)

or to effects of actions:

Verification Case 4 (Factored effects)

or to resistance:

Resistance factor approach (RFA)

Decoding Eurocode 7 ©2005-2023 Geocentrix Ltd. All rights reserved

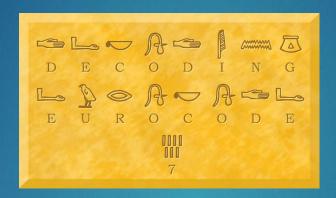
Partial factors for fundamental design situations (general application)

Action or effect			Partial factors $\gamma_{\rm F}$ and $\gamma_{\rm E}$ for Verification Cases 1-4						
Туре	Group	Symbol	Resulting effect	Struct- ural*	- Static equilibrium Ge and uplift**			otechnical design	
				VC1	VC2(a)	VC2(b)	VC3	VC4	
Permanent	All	γ _G	unfavourable/						
action (G _k)	Water	$\gamma_{G,w}$	destabilizing					G _k is not factored	
	All	$\gamma_{G,stb}$	stabilizing						
	Water	$\gamma_{Gw,stb}$	STUDINZITIG						
	(All)	∕G,fav	favourable		On actions				
Prestressing (P_k)		γ̈́P							
Variable	All	γ_{Q}	unfavourable						
action (Q_k)	Water	$\gamma_{\rm Qw}$	uniavoulable					On	
	(All)	$\gamma_{\mathrm{Q,fav}}$	favourable					effects	
Effects-of-actions (E)		γ_{E}	unfavourable	is not applied					
		$\gamma_{E,fav}$	favourable	$\gamma_{\!\scriptscriptstyle E}$ is not applied					
*Also used for geotechnical design; **Less favourable outcome of (a) and (b) applies									

^{*}Also used for geotechnical design; **Less favourable outcome of (a) and (b) applies Values taken from prEN 1990:2022, Annex A.1

Partial factors for fundamental design situations (ground properties)

Ground property	Symbol	M1	M2				
Soil							
Shear strength in effective stress analysis ($ au_{ m f}$)	$\gamma_{ m tf}$						
Coefficient of peak friction (tan ${arphi}_{ m p}$)	$\gamma_{tan_{oldsymbol{arphi},p}}$	1.0	$1.25 k_{\rm M}$				
Peak effective cohesion (c'p)	$\gamma_{c,p}$						
Coefficient of friction at critical state (tan $arphi_{cs}$)	$\gamma_{tan_{oldsymbol{arphi},Cs}}$		1.1 <i>k</i> _M				
Coefficient of residual friction (tan $arphi_{ m r}$)	$\gamma_{tan_{oldsymbol{arphi},r}}$						
Shear strength in total stress analysis ($c_{\scriptscriptstyle U}$)	$\gamma_{ extsf{CU}}$		1.4 k_{M}				
Rock							
Unconfined compressive strength ($q_{_{U}}$)	$\gamma_{ m qu}$	Same as $\gamma_{ extsf{cu}}$					
near strength of rock ($ au_{ m r}$) $ au_{ m au r}$		1.0	$1.25 k_{\rm M}$				
Unconfined compressive strength of rock ($q_{_{U}}$)	γ_{qu}	1.0	1.4 k_{M}				
Discontinuities							
Shear strength of rock discontinuities ($ au_{ ext{dis}}$)	1.0	$1.25 k_{\rm M}$					
Coefficient of residual friction (tan $arphi_{ ext{dis,r}}$)	$\gamma_{tan_{oldsymbol{arphi}},dis,r}$	1.0	$1.1 k_{M}$				


Summary of key points

EUROCODE 7
2ND-GENERATION UPDATE

Improvements in 2nd generation ... EN 1997 Geotechnical design

- Organizational changes to Eurocode 7
 - Clearer layout aids ease-of-navigation
 - Greater consistency with EN 1990 aids ease-of-use
- No more Design Approaches!
 - Simpler choice of partial factors
 - Material Factor or Resistance Factor Approach
- Catering for different groundwater conditions
 - Better specification of groundwater pressures
- Separating consequence from hazard
 - Clear distinction between consequence of failure and complexity of the ground
 - Geotechnical Categories now drive meaningful decisions

Decoding 2nd generation Eurocodes www.geocentrix.co.uk/training

Our **2nd generation** courses include ...

- Decoding Eurocode 7
 - Basis of geotechnical design
 - Ground properties (and ground investigation)
 - Shallow foundations
 - Deep foundations
- Decoding Eurocode 3 Steel foundations

References

Steve Denton, David Nethercot, Andrew Bond, and Mariapia Angelino (2024), Eurocodes evolution: latest developments and UK approach, The Structural Engineer, Volume 102, Issue 3, pp12-14

Bond (2023), Technical note: Timeline and improvements for the second generation of Eurocodes, Ground Engineering, 14th November 2023 (http://tinyurl.com/y73ypban)

2nd generation Decoding ^ Eurocodes Eurocode 7 2nd-generation update

WWW.GEOCENTRIX.CO.UK

WWW.DECODINGEUROCODE7.COM